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Abstract

The temperature variations of first-, second- and third-sound velocity

and attenuation coefficients in one-dimensional superfluid helium are

evaluated explicitly for very low temperatures and frequencies (ws • << 1,

where w is the sound frequency and r the characteristic time), by using the

collisionless kinetic equation and superfluid hydrodynamic equations with the

2
energy dissipation effect. The leading terms for these sounds vary as T , and

the ratio of second sound to first sound becomes unity as the temperature

decreases to absolute zero.
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I. Introduction

The propagation of sounds has been an important subject in the study of

liquid helium, and especially the temperature variations of the various sounds

are interesting because they are very closely related to the elementary

excitation dispersion relation. It is well established that at low

temperatures and pressures, where roton excitation can be neglected, the

thermal properties of superfluid helium are dominated by low-momentum acoustic

phonons; which do not possess a normal, but rather an anomalous excitation

spectrum. These two cases lead to different microscopic processes. In the

former case four-photon processes (4PP) are dominant, while in the latter case

3PP become important.2 Andreev and Khalatnikov 3 calculated the temperature

variation of sound in bulk liquid helium using a collisionless kinetic

equation together with an equation for the superfluid velocity. Singh and

Prakash4 investigated the behavior of the retarded single-particle Green's

function for a weakly-interacting Bose gas and found a new temperature-

dependent term. However, they adopted the normal excitation spectrum in their

calculations. We have obtained microscopically anomalous excitation

dispersions5 in two-and three-dimensional liquid helium which are based on the

ring diagram approximation, and using these dispersions5 we have not only
6

improved on their results, but have also obtained first, second and third

sound in thin helium films.
7

Concerning second sound in bulk liquid helium, the velocity of this mode

is c0/J1, where c0 is the velocity of first sound in the low-frequency limit

ari1 low-temperature phonon dominant region. However, Maria8 has predicted a

new type of second sound which increases towards to c0 in the regime of

collinear phonon processes. More recently, using pulsed time-of-flight and cw

resonance techniques, ELsenstein and Narayanamurti 9 have observed this new



3

type of collective mode as a function of frequency, the so-called one-

dimensional second sound, in superfluid helium at low temperatures and

pressures. (The term "one-dimensional" means simply that the thermal phonons

in a wave motion have wave vectors almost parallel to the propagation

direction of the wave in bulk superfluid helium.) This mode was predicted by

Maris.
9

In many-body theory there are several one-dimensional models1 0 of Bose

or Fermi gases with two-body interactions among particles. Although these

models can describe the ground-state energy, eigenfunction and other

quantities, they are not appropriate for application to this new mode.

However, we have recently developed a model of a one-dimensional Bose liquid

based on the ring diagram approximation. Through this model we obtained the

pair distribution function of a one-dimensional Bose liquid and then its

anomalous excitation spectrum and thermodynamic functions. In this mode, we

assumed that the interaction potential between helium atoms is given by a soft

potential with a Lennard-Jones type tail as

vo 0 xl < a

OW- { (1.1)
(i) 6 ])

6o ()12 A) 6 jj
[(~2- ' l xi _ a

In this paper we introduce a one-dimensional model for superfluid helium

to derive the temperature variations of first, second and third sound for

theory's sake, and also show that the above three sounds vary as T2 and that

second sound reduces to first sound at absolute zero temperature. In the long

wavelength limit, the anomalous excitation spectrum is given by
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E(q) -Aoq + Bq3 + Cq5 + Dq6 + ... (1.2)

where the coefficients are

2 .1+A 2

A6-4na(V
0 - 5 C , B- 2A

2 2 2
A (11-A1)A32A 0  8A 3  

2A 0
0

2 3 V £2 5 V aA- 4na- 3 +9) 4na (5j- 28)

A2 - 2nab 5 o (1.3)

where n is number density. We note that Eq. (1.2) represents an anomalous

dispersion because B is positive. In the case of third sound, the excitation

spectrum involves not only the anomalous excitation but also the roton

dispersion, which corresponds to large momentum. For large momentum we can

express the roton excitation spectrum as

E(q) - qq 2 + 4naV 0  a 1 (1.4)

The energy E(q) is oscillatory. Around the first minimum qo' we can replace

E(q) approximately by a Landau form,

E(q) - 4 + (qq2 (1.5)
(q) 0
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where A and m* are the energy gap and effective mass, respectively.

In Sec. II we first evaluate the temperature variation of first sound

near absolute zero following the method of Andreev and Khalatnikov, and then

at low frequencies such that wsr << 1, where ws is the sound frequency and r

the characteristic time, we solve the superfluid hydrodynamic equations to

obtain first and second sound in Sec. III. In Sec. IV the derivation of one-

dimensional third sound will be given, and we finally present numerical

results and discussion with a table and graphs in Sec. V. Throughout this

paper we take the units such that ( - 1 and 2m - 1, where m is the particle

mass, except for the case in which explicit restoration of )K or 2m is

required.

II. Kinetic arnroach

The temperature variation of first sound can be obtained by solving the

equations of motion of the fluid assuming that roton excitation is negligible

where the phonon excitation is dominant. In order to obtain the sound

velocity, we solve the kinetic equation for the phonon distribution function

n(r,p,t) without the collision term together with the equation of continuity

and the equation for the superfluid velocity vs. Since these equations were
6

given in our previous paper, we shall not repeat them here. When the liquid

is slightly perturbed from equilibrium, we can assume that the deviations of

the distribution function, mass density and superfluid velocity (represented

by n', p' and v, respectively) are small and nroportional to expfi(kX-wt)],I Ss

where k is the complex wave vector, kI + ik2, which characterizes the

attenuation of sound. Linearizing the above-mentioned three equations for n',

p' and v'I, we obtain

-- . --- -.. m.,, ,,-.,mmm mQ mm mp "'
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_2 n 0 _] 2 ano - icy

k ap- dq q wv' [Po + dp q a" w +kv V; -0

(2.1)

c 2- .q a-c an
[_2+ dq 2 n + ( ) dq q 2 c ),
PO f 2 ap a E cjs+kv]

+ o v' - 0 (2.2)

k 890 S w +kv s

where p is the equilibrium density of liquid. The nontrivial solution can be

derived by setting the corresponding determinant equal to zero, and then

making use of Eq. (1.2) we obtain the sound velocity expression

- c + 6c
q

c 2c 2PO 02
6c- -- ([(l+u) 2 + . ni l + .L. 2] a n (2.3)

2 c 0 Co AC 0p 2  po
0 0

where u - (p /c)(ac/Op ) is the Grneisen constant, and the normal fluid

density in Eq. (2.3) is given by

n() L_[ 2!Ci~(22)2 _ SkT)4 7 czL) C(T6
nT) - .zI3 C(kBT) 5 B(kT) + 8 C(kBT + ... ] .(2.4)

AS A 0

We note that at very low temperatures 6c decreases as temperature increases.
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III. Hydrodynamic method

For low frequencies (ws << 1), we can apply the superfluid hydrodynamic

equations with the dissipation term to the problem of first and second sound

propagation in one-dimensional liquid helium. These equations are also given

in our previous paper, and thus they will not be discussed here. As

mentioned earlier, we also assume that deviations of the pressure, temperature

and velocity of the normal component (P, T and v n) from equilibrium (expressed

by P', T' and v') are small and proportional to exp[i(kx-w t)]. Linearizing
n s

these hydrodynamic equations, we obtain four hydrodynamic equations,

P I + T'] -p v -pV' - 0 (3.1)
k p T n ss

p IT p' + [w "( "p ) + ik]T' - SPyV - 0 (3.2)

p' - P0S0T' + ikpo(Ps0 3 - 4 )v' - pO(k + ikp s 3)v' - 0 (3.3)

p - (k ikps + ik(2)vj + ik Ips)v; - 0 , (3.4)

where S is the entropy per unit mass, pn and ps are the mass densities of the

two fluid components, P is the thermal conductivity, and l' 2' 3 and 4 are

coefficients of second viscosity. These coefficients must be positive, and

(Ci+Y22 < 4t2t3 must be satisfied. Also, we must take i in view of

Onsager's reciprocal theorem.

Evaluating the variables P' and T' from Eqs. (3.1)-(3.2) and combining

them with Eqs. (3.3)-(3.4) together with the relations

"- •... mmmmm I 1 I ~ m i nn II
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ap T 2 aT )P'(35

BP~T8T~ (~)(~) - (~)1~)1(3.6)
(aP as P 1T -P ap SaTp P a8T 8P T

we obtain

(-)4 [ClO+C20 -iW & iws P n-2
10 20 S p 0CV Spn f~2pp )(kI

2 2 nV 2 2

C p1020C Slop 0pn

- i s 2 1- [ 2 (  )P](-pfl+(2) + Po2 I - 0 (3.7)
0o m

where

C 2 c 2  f- 2 T10o " (a )s 20 " pn SC v

IV - T() ,l Cp - T(&IT)p (3.8)
(aT2 p TP

Equation (3.7) is a quadratic equation in ws/k, and its two solutions

correspond to cwo 2odes of sound propagation known as first and second sound

with the corresponding attenuation coefficients. Solving Eq. (3.7) we obtain

2 2 ~ r 0 ~~T ~~' (3.9)
CV Cp
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1:2 C2 - iYA - 2.l+2 fz Lp+ 12 2)'2 20 p" s Cp P C Po T )P  0° I+a'

(3.10)

i - - P s  
- (3.n)

. IL(--) . - p P

1.I 2p C2 2  C p p Cap oT P (3.11)

oP 10
2s W_2 .n.

a 2  Imp) C2  [t2 -
2 p 0f, +PO + o

SL() (-p +)] (3.12)p C P aT012Y

The expressions for first and second sound and their attenuation coefficients

are very similar to those for two-dimensional films.

IV.

When sound waves with wavelength longer than the film thickness

propagate along a helium film, the normal fluid is clamped to the substrate,

while the superfluid shows density fluctuations. Since third sound in

superfluid helium films has been observed in thick and thin films, 12 there are

several theoretical approaches.
13  Rutledge, McMillan, Mochel and Washburn

14

(RMMW) have analyzed third-sound data in thin helium films in terms of a

quantum hydrodynamic approach with some phenomenological assumptions about the

surface energy and roton excitation. We have also investigated thin-film data

on the basis of our microscopic theory without any of the assumptions made by

RN.W.
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For the velocity of one-dimensional third sound, we make use of the

formula

c2(T) - Ps(T) x(T) (4.1)

where m is the helium mass, ps(T) is the superfluid number density, and x(T)

is the adiabatic elastic constant, which can be obtained from the second

derivative of the internal energy with respect to the one-dimensional number

density. The phonon and roton energies can be obtained from Eqs. (1.2) and

(1.5) as

ph(T) 52 D(n D2D 5 n(2 2
1 1

_____ 1(D~n+l)2
+ C()[D3

2n Dn 3 2 ]k ) + "--) , (4.2)

1n 11

m*kT h"/B

Erot (T) --. , (A + IkBT)e , (4.3)
2,r

and the ground state energy is given by

Eg - naV*(l - I _72V2) (4.4)

where V* - (V - 6e /55) and 7 - 1.3290, and for convenience we have used the

following:
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A D2n ,A D 2 n A2 n (4.5)

Neglecting the variation of the roton energy A with temperature, we

arrive at

2
r.(T) -dn [Eg9+ ph (T) + E rot (T)]

2m*ya2V 2~L

- 2aV*(l - 2 1 _.D (kBT)

r2V, 8w D n5 /2 B

5 3D2  7_ T4

58w 8D5n 7/2 + 5 n9 /2  B )

1 1

6 35D D  35D 2  63D 2

+_5C_6 1 3 2 9 )(k T)6
2x 8n 32(D n/ 2  16D 9n 1 /2  32D9n 3/2 )B

1 1 1

+ .(4.6)

Thus we obtain third sound as

2+ 2 4 6 A/kBT
c3 (T) a1  2 3 a4T e

Sas5T5/2 e -A/kB T + a6T
7/2 eA/kBT - 7T 1 1/2 eA/kBT  , (4.7)

where the coefficients are given by
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2m*-fa 2 2 k
c2 (0) - a., b 2akBV*(i - -2 B

2 2
3DI

1 r 3n5/2 2 8b)

a (4) 1 D) - - 3r(2) 2D

2 iD 5 n7/ 2 2 n +  4b 7 3/22irD5n DI  w(4)bn3/

6 D 2

(6 )k E 7!, 2  1 D2 2

a -23 22 2 4
,,D7 n9/2 2D1 I 4D In2  2D rIn

4(2)c(4) C 8+ D2  2

4 (6)wbD 1fn5/
2 n 2 + 3

1

+ 2bn 4D12  2n 28D2n 2

3q2 (2) m*k 3
a 4 - 2(m*) a5 -.

4 21)(kB 4wbD n 7/2 2im)(2

45f (4)q 2 3D )

a6  2 21r 2M 2 n

2 11 2

(6)qo M*'CiI-224 29!j I ,.

a7 . 2)( 7 22 . 71!! D 7 19 I (4.8)
7 4wbD 9 n 2w)( 2 1 3 2 n 7n2 "
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In Eq. (4.7) the first, next three and fifth terms are associated with the

ground state, phonon and roton energy, respectively. The remaining terms are

coupled with the phonon and roton energy.

V. Numerical results and discussion

In this section we present calculations based on the formulas obtained

in the previous sections. Before going further, we first look at the

excitation spectrum, because all sounds we have obtained are closely related

to the spectrum. We adopted a soft potential and obtained the excitation

spectrum as a function of the dimensionless parameter qa shown in Fig. I with

the potential and rotorn parameters. As mentioned earlier, our theory is

characterized by the potential parameters Vo, 0  and a. For given values of

these parameters, we can obtain the roton parameters A and q0. Therefore, we

have determined the potential parameters such that the excitation spectrum

becomes anomalous phonon-like and roton-like for small and large momenta,

respectively, and reproduces the same form as that of two-dimensional third

sound (Fig. 2) because of the lack of the experimental data in one-dimensional

superfluid helium. For the case of helium films, we have determined the
15

parameters so as to reproduce the specific heat data of Bretz et al, and

with this choice we have obtained co - 84.06 m/s, which is close to the

experimental value of (76 ± 2) m/s of Washburn et al.1 6 Hence, the numerical

parameters in one dimension have been chosen in association with the previous

values, which we have taken earlier in two- and three-dimensional liquid

helium. They are listed in Table 1. However, the effective mass and roton

energy are much lower and a little higher than those of thin helium films,

respectively. The behavior of the excitation spectrum, which is analogous to

the Landau spectrum, is anomalous phonon-like for small momenta and roton-like
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at around q0 for large momenta. By increasing (or decreasing) the numerical

values of n, a and Vo, we can make the phonon slope steeper (or slow) and also

deplete the roton minimum progressively. By appropriate increases of

parameters, the roton minimum may disappear and eventually become an

inflection point. Then the spectrum reduces to that of a pseudopotential or

Coulomic potential.17 Neglecting the Lennard-Jones-type tail, the excitation

spectrum becomes the three-dimensional excitation spectrum of Brueckner and

18 19
Sawada. In comparison of the excitation with Lieb's results, ours

just corresponds to type-I excitation (the so-called Bogoliubov spectrum).

The thermodynamic functions obtained from phonon excitation (Eq. (1.2)

agree with Padmore's results.2 0 Due to the dimensionality, all thermodynamic

functions are one power lower in temperature than those for two dimensions.

For the roton part, they have the same form as those for other dimensions

except for small modifications.

In Sec. 2 we have evaluated first sound (Eq. (2.3)) by solving the

collisionless kinetic equation. The leading term for first sound increases as

T2 , in contrast to T3 and T4 lnT I in two- and three-dimensional liquid helium,

respectively. In one and two dimensions the absence of a logarithmic term is

due to the fact that the angle integrals become zero or do not appear in both

dimensions. The first-sound expression (Eq. (2.3)) decreases monotonically,

while first sounds obtained by considering of the collision term as in the

single-collision-time model21 in two and three dimensions increase gently, and

then decrease as temperature increases from absolute zero. We note that the

single-collision-time model does not hold in one dimension. The collisionless

kinetic equation does not yield second sound, which means that the collision

integral and second sound are closely related to each other.
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In the low-frequency region, first- and second-sound propagations are

obtained by treating superfluid hydrodynamic equations including the energy

dissipation effect. The results are given by Eqs. (3.9)-(3.12). Excluding

attenuation terms and substituting thermodynamic functions and fluid

densities (see the Appendix), first and second sound at absolute zero

temperature reduce to

c1 (0) c 2 (0) - A0 - (2na(Vo.55eo)/m*J

We thus note that A0 in Eq. (1.2) represents the sound velocity at absolute

zero temperature, such that the ratio of c2 to cI becomes unity at absolute

zero. We have shown that the magnitude of second sound is l//2 of the first-

sound velocity in thin helium films7 and find that c2 is i/,13 times that of

first sound in the bulk case 9 at absolute zero temperature in the low-

frequency region. Figure 3 illustrates our theoretical sounds based on Eq.

(3.8) at the density of n - 0.167 A1 , which corresponds to 2.18 x 10,2 A-3 in

three dimensions. The numerical value of C1 (0) is given by 201.4 m/s, which

is close to that of three dimensions rather than that in two dimensions. This

figure confirms that the two sound modes show different temperature

variations. However, the overall variations of the two sounds are very

similar to those of two dimensions. As temperature increases, second sound

passes through a first gentle maximum and arrives at a minimum at around 0.8

K. It then reaches another peak, after which it decreases rapdily and

vanishes at the critical point. This variation is mainly due to the

thermodynamic functions given in the Appendix. As temperature increases from

absolute zero, first sound increases moderately and then decreaes

monotonically. This indicates that the excitation spectrum is anomalous at

i
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low momentum. As mentioned in preceding sections, we note that using a

phonon-Boltzmann-equation method, Mars showed that second sound at high

temperatures and low frequencies increases gradually to first sound in the

opposite limit, and further calculations given by Benin 22 predicted that this

one-dimensional second sound propagates far into the regime wsr >> 1.

In conclusion, we have two remarks: (1) The leading terms in first,

second and third sound vary as T2 . (2) Second sound reduces to first sound at

absolute zero temperature.
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App~endix

The thermodynamic functions and normal fluid density for the phonon

part and roton density are given by

k 4I(i3 6c6

Sh(T) -- !,( 1O (kBT) _ 4 B(cT) 3 + 6C C(kBT)5 + "''
ph 21r Ac 0

5A2+7

P (T) - (.k T) 2 _ B (kT)4 .+ B1 - 1 '
ph 2w 2 A 0  (Bk" A02

(T [2 !C (2 ) (k"T) - 3x4l(4) B(kBT)3 + W ) C(kT)S+ ...
CV,ph) 2w A0  4A 4 6

ph~'2nA6 600 A°,Ac

p(T) 2!C2) (k"T)2 
-1CM B(kBT) 4 + 7!.,() C(kBT) 6 + "'

2w A 3 A 6 A 8
000

_ 4 2 A/kBT
pn,rot(T) " (2*kT) e

]kB
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Table 1. Potential and roton parameters.

n(A,-1) a(A) V 0(K) c0(K) q0Wm*/m A(K)

0.167 3.40 8 26 1.19 0.30 5.36
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Figure Captions

Figure 1. Elementary excitation spectrum c(q)/kB for one-dimensional liquid

helium plotted against the dimensionless parameter qa.

Figure 2. Temperature variation of third sound at the density 0.167 A-.

Figure 3. Overall temperature variation of first- and second-sound velocity

at the density 0.167 A-'.

Figure 4. Temperature dependence of the ratio (c1-C2)/c, at the density 0.167

A- at temperatures below about 0.3 K.
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